It compute & display Distance Matrices & (Characteristic & Counting) Polynomials for vertex cutings for this molecule.

Di\{1}12345678910
10161616161616161616
216011223445
316101223445
416110112334
516221011223
616221101223
716332110112
816443221011
916443221101
1016554332110
CoP(3_g1,[1]) =+1X0 ChP(3_g1,[1]) =+1X1 CoP(3_g1,[2 3 4 5 6 7 8 9 10]) =+4X5+10X4+12X3+20X2+26X1+9X0 ChP(3_g1,[2 3 4 5 6 7 8 9 10]) =+1X9-13X7-10X6+47X5+68X4-19X3-82X2-48X1-8X0 CoP(3_g1\{1}) =+26X1+20X2+12X3+10X4+4X5+10X0 ChP(3_g1\{1}) =-47X1-82X2-19X3+68X4+47X5-10X6-13X7+1X9-8X0
Di\{2}12345678910
101612334556
21601616161616161616
311601223445
421610112334
531621011223
631621101223
741632110112
851643221011
951643221101
1061654332110
CoP(3_g1,[1 3 4 5 6 7 8 9 10]) =+2X6+6X5+8X4+14X3+18X2+24X1+9X0 ChP(3_g1,[1 3 4 5 6 7 8 9 10]) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-16X1 CoP(3_g1,[2]) =+1X0 ChP(3_g1,[2]) =+1X1 CoP(3_g1\{2}) =+2X6+6X5+8X4+14X3+18X2+24X1+10X0 ChP(3_g1\{2}) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-15X1
Di\{3}12345678910
101162334556
210161223445
31616016161616161616
421160112334
532161011223
632161101223
743162110112
854163221011
954163221101
1065164332110
CoP(3_g1,[1 2 4 5 6 7 8 9 10]) =+2X6+6X5+8X4+14X3+18X2+24X1+9X0 ChP(3_g1,[1 2 4 5 6 7 8 9 10]) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-16X1 CoP(3_g1,[3]) =+1X0 ChP(3_g1,[3]) =+1X1 CoP(3_g1\{3}) =+2X6+6X5+8X4+14X3+18X2+24X1+10X0 ChP(3_g1\{3}) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-15X1
Di\{4}12345678910
101116161616161616
210116161616161616
311016161616161616
41616160161616161616
516161616011223
616161616101223
716161616110112
816161616221011
916161616221101
1016161616332110
CoP(3_g1,[1 2 3]) =+6X1+3X0 ChP(3_g1,[1 2 3]) =+1X3-3X1-2X0 CoP(3_g1,[4]) =+1X0 ChP(3_g1,[4]) =+1X1 CoP(3_g1,[5 6 7 8 9 10]) =+4X3+10X2+16X1+6X0 ChP(3_g1,[5 6 7 8 9 10]) =+1X6-8X4-6X3+11X2+14X1+4X0 CoP(3_g1\{4}) =+22X1+10X2+4X3+10X0 ChP(3_g1\{4}) =+12X1+11X2-5X3-8X4+1X6+2X0
Di\{5}12345678910
101121634556
210111623445
311011623445
421101612334
51616161601616161616
632211601223
743321610112
854431621011
954431621101
1065541632110
CoP(3_g1,[1 2 3 4 6 7 8 9 10]) =+2X6+8X5+12X4+12X3+14X2+24X1+9X0 ChP(3_g1,[1 2 3 4 6 7 8 9 10]) =+1X9-12X7-8X6+41X5+52X4-14X3-44X2-16X1 CoP(3_g1,[5]) =+1X0 ChP(3_g1,[5]) =+1X1 CoP(3_g1\{5}) =+2X6+8X5+12X4+12X3+14X2+24X1+10X0 ChP(3_g1\{5}) =+1X9-12X7-8X6+41X5+52X4-14X3-44X2-15X1
Di\{6}12345678910
101123164556
210112163445
311012163445
421101162334
532210161223
61616161616016161616
743321160112
854432161011
954432161101
1065543162110
CoP(3_g1,[1 2 3 4 5 7 8 9 10]) =+2X6+8X5+12X4+12X3+14X2+24X1+9X0 ChP(3_g1,[1 2 3 4 5 7 8 9 10]) =+1X9-12X7-8X6+41X5+52X4-14X3-44X2-16X1 CoP(3_g1,[6]) =+1X0 ChP(3_g1,[6]) =+1X1 CoP(3_g1\{6}) =+2X6+8X5+12X4+12X3+14X2+24X1+10X0 ChP(3_g1\{6}) =+1X9-12X7-8X6+41X5+52X4-14X3-44X2-15X1
Di\{7}12345678910
101123316161616
210112216161616
311012216161616
421101116161616
532210116161616
632211016161616
71616161616160161616
816161616161616011
916161616161616101
1016161616161616110
CoP(3_g1,[1 2 3 4 5 6]) =+4X3+10X2+16X1+6X0 ChP(3_g1,[1 2 3 4 5 6]) =+1X6-8X4-6X3+11X2+14X1+4X0 CoP(3_g1,[7]) =+1X0 ChP(3_g1,[7]) =+1X1 CoP(3_g1,[8 9 10]) =+6X1+3X0 ChP(3_g1,[8 9 10]) =+1X3-3X1-2X0 CoP(3_g1\{7}) =+10X2+4X3+22X1+10X0 ChP(3_g1\{7}) =+11X2-8X4+1X6+12X1-5X3+2X0
Di\{8}12345678910
101123341656
210112231645
311012231645
421101121634
532210111623
632211011623
743321101612
81616161616161601616
954432211601
1065543321610
CoP(3_g1,[1 2 3 4 5 6 7 9 10]) =+2X6+6X5+8X4+14X3+18X2+24X1+9X0 ChP(3_g1,[1 2 3 4 5 6 7 9 10]) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-16X1 CoP(3_g1,[8]) =+1X0 ChP(3_g1,[8]) =+1X1 CoP(3_g1\{8}) =+2X6+6X5+8X4+14X3+18X2+24X1+10X0 ChP(3_g1\{8}) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-15X1
Di\{9}12345678910
101123345166
210112234165
311012234165
421101123164
532210112163
632211012163
743321101162
854432210161
91616161616161616016
1065543321160
CoP(3_g1,[1 2 3 4 5 6 7 8 10]) =+2X6+6X5+8X4+14X3+18X2+24X1+9X0 ChP(3_g1,[1 2 3 4 5 6 7 8 10]) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-16X1 CoP(3_g1,[9]) =+1X0 ChP(3_g1,[9]) =+1X1 CoP(3_g1\{9}) =+2X6+6X5+8X4+14X3+18X2+24X1+10X0 ChP(3_g1\{9}) =+1X9-12X7-8X6+39X5+46X4-20X3-46X2-15X1
Di\{10}12345678910
101123345516
210112234416
311012234416
421101123316
532210112216
632211012216
743321101116
854432210116
954432211016
101616161616161616160
CoP(3_g1,[1 2 3 4 5 6 7 8 9]) =+4X5+10X4+12X3+20X2+26X1+9X0 ChP(3_g1,[1 2 3 4 5 6 7 8 9]) =+1X9-13X7-10X6+47X5+68X4-19X3-82X2-48X1-8X0 CoP(3_g1,[10]) =+1X0 ChP(3_g1,[10]) =+1X1 CoP(3_g1\{10}) =+4X5+10X4+12X3+20X2+26X1+10X0 ChP(3_g1\{10}) =+1X9-13X7-10X6+47X5+68X4-19X3-82X2-47X1-8X0
Di12345678910
10112334556
21011223445
31101223445
42110112334
53221011223
63221101223
74332110112
85443221011
95443221101
106554332110
CoP(3_g1) =+2X6+8X5+12X4+16X3+22X2+30X1+10X0 ChP(3_g1) =+1X10-15X8-12X7+67X6+104X5-45X4-188X3-136X2-32X1 CoP(Ui=1..103_g1\{i}) =+240X1+160X2+112X3+76X4+48X5+12X6+100X0 ChP(Ui=1..103_g1\{i}) =-414X2-156X3+408X4+332X5-66X6-98X7+8X9-160X1-12X0